Zachary Coalson

Corvallis, OR | coalsonz@oregonstate.edu

Summary

I am a prospective PhD student working on trustworthy and socially-responsible AI under the supervision of Prof. Sanghyun Hong.

Education

Oregon State University, Corvallis, OR

Sept 2020 - Present

B.S. in Computer Science, Minor in Mathematics (GPA: 4.0/4.0)

Honors Thesis: Auditing the Robustness of Neural Architecture Search to Data Distribution Shifts

Academic advisor: Prof. Sanghyun Hong

Honors and Awards

Oregon State University Honor Roll

2020 - 2024

Drucilla Shepard Smith Award for maintaining a cumulative 4.0 GPA

2022, 2024

Finnley Academic Excellence Scholarship

2020

Publications

Conference Publications

 Zachary Coalson, Gabriel Ritter, Rakesh Bobba, Sanghyun Hong, "BERT Lost Patience Won't Be Robust to Adversarial Slowdown", In the 37th Conference on Neural Information Processing Systems (NeurIPS), 2023, https://openreview.net/forum?id=TcG8jhOPdv. (acceptance rate: 26.1%)

Preprints

- Zachary Coalson, Huazheng Wang, Qingyun Wu, Sanghyun Hong, "Hard Work Does Not Always Pay Off: Poisoning Attacks on Neural Architecture Search", arXiv preprint, 2024, https://arxiv.org/abs/2405.06073.
- Zachary Coalson, Jeonghyun Woo, Shiyang Chen, Yu Sun, Lishan Yang, Prashant Nair, Bo Fang, Sanghyun Hong, "PrisonBreak: Jailbreaking Large Language Models with Fewer Than Twenty-Five Targeted Bit-flips", arXiv preprint, 2024, https://arxiv.org/abs/2412.07192.

Research Experience

Bit Flip Attacks to Jailbreak Large Language Models

April 2024 - Nov 2024

- Created a comprehensive bit flip attack pipeline.
- Evaluated the pipeline on eight open-source large language chat models across two harmful tasks.
- Demonstrated state-of-the-art attack success while flipping minimal bits.

Data Poisoning on Neural Architecture Search

Dec 2023 - May 2024

- Developed a gradient-based clean-label poisoning attack to audit the robustness of NAS algorithms.
- Evaluated the attack on two representative NAS algorithms and one computer vision dataset.
- Discovered that such algorithms are surprisingly robust to practical poisoning attacks.

Slowdown Attacks on Input-Adaptive NLP Models

Aug 2022 – Dec 2023

- Designed an objective function for gradient-based slowdown attacks.
- Developed two slowdown attacks based on the state-of-the-art adversarial text attacks on NLP models.
- Performed an evaluation of the attacks on three input-adaptive NLP models across seven datasets.
- Demonstrated 100% attack success and proposed potential countermeasures such as input sanitization.

Professional Academic Activities

Conference Presentations

 BERT Lost Patience Won't Be Robust to Adversarial Slowdown, Poster Presentation, NeurIPS '23 Dec 2023